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OTTER CREEK MINE  

EXHIBIT 314C 

PROBABLE HYDROLOGIC CONSEQUENCES 

 

 

1.0  INTRODUCTION 

 

Exhibit 314C presents background information, methodology, and results of the evaluation of 

Probable Hydrologic Consequences for the Otter Creek Mine.  Results presented in this 

exhibit are based on site knowledge and data obtained through baseline investigations.  

Interpretation and conclusions presented in this exhibit address the requirements of ARM 

17.24.314(1)(a) through (c) and (2)(a) through (c).   
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2.0  MINING OPERATIONS 

 

Mining operations are proposed for Tract 2.  A complete description of the proposed mine 

plan is in Exhibit 308A – Operations Plan. 

 

The mine plan is designed to maximize recovery of economically mineable coal in Tract 2, as 

shown on Map 8-Mine Plan.  However, in specific areas, most notably along the 

downgradient boundaries (west and northern portions) a barrier (buffer) of unmined coal will 

remain in place.  The purpose of this buffer will be to allow management of groundwater 

flow to the active pits.  Hydraulic conductivities of competent Knobloch Coal are multiple 

orders of magnitude lower than either the alluvium or clinker.  Therefore, groundwater flow 

can be normalized/controlled somewhat during mining operations by leaving a strip of 

competent coal in place throughout mining.  This will also allow recharge to backfilled spoil 

in the initial cuts to be managed as mining progresses eastward by regulating groundwater 

flow from the alluvium and clinker through the unmined coal. 
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3.0  PRECIPITATION AND CLIMATE 

 

Climate data were collected throughout the baseline monitoring period.  Results of the first 

year of site-specific meteorological data collection effort are presented in Exhibit 304I 

(Climatological Report and On-Site Meteorological Monitoring Summary).  Historical 

climatological data are routinely collected and recorded for Birney, Broadus, Colstrip, and 

Miles City, Montana.  A short summary of the area temperature and climate data are present 

here to provide a general overview of conditions at the site.   

 

3.1 TEMPERATURE 

Temperatures in the vicinity of the Otter Creek Mine show seasonal extreme fluctuations.  

Average high temperatures in January are typically about 32 degrees Fahrenheit (°F) to about 

88°F in July.  Average low temperatures are about 7°F in January to 56°F in July.  See 

Exhibit 304I for additional information. 

 

3.2 PRECIPITATION 

Average monthly precipitation varies from about 0.5 inches in January and February to 

around 2.5 inches in May and June.  Average annual precipitation is approximately 14 inches.  

Precipitation in the form of snowfall is highest in December and January, when around six 

inches fall.  Total annual snowfall is about 34 inches (Bison, 2012). 

 

3.3 EVAPORATION 

Evaporation monitoring was not conducted within the Study Area during baseline data 

collection.  Average annual evaporation measured approximately 80 miles west and slightly 

south of the Study Area is 47 inches.  This value was reported for the monitoring period from 

1948 to 2005 at the Yellowtail Dam (http://www.wrcc.dri.edu/htmlfiles/westevap.final.html).  

In addition, pan evaporation rates for the Absaloka Mine from 1975 to 1989 averaged 37.9 

inches (WRI 1992).  The Absaloka Mine is located approximately 50 miles northwest of the 

Study Area.  
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4.0  HYDROLOGIC SYSTEM OVERVIEW 

 

4.1 SURFACE WATER SYSTEM 

Otter Creek flows through strata of the Tongue River Member of the Fort Union Formation.  

These strata consist of interbedded sandstone, siltstone, shale, and coal deposited from 

braided drainage systems.  This type of depositional environment results in lateral facies 

changes and strata which show variable levels of resistance to erosion.  Erosion of the 

sedimentary rocks has resulted in a dendritic drainage pattern.   

 

Approximately 350 feet of relief exists in the Study Area.  Burning of coal has resulted in the 

formation of clinker around the perimeter and tops of many hills in the area.  Erosion of 

bedrock formations and associated clinker, and subsequent deposition in valley bottoms, 

results in relatively broad alluvium filled valleys.  Following a period of erosion and 

deposition, lower periods of precipitation resulted in deposition of finer grained sediments 

which overlie coarser grained deposits.  This has resulted in coarser grained alluvium 

consisting of sand and gravel above the bedrock contacts and finer grained sediments near the 

surface.  The finer grained sediments at the surface reduce the amount of surface water- 

groundwater interchange between Otter Creek and underlying unconsolidated sediments. 

 

The Otter Creek coal tracts are approximately eight miles upstream of Ashland, Montana.  

Surface water quality was monitored at 32 sites in and around Otter Creek Coal Tracts 1, 2, 

and 3 to collect baseline water resources data.  Surface water hydrology of Otter Creek near 

the Otter Creek Mine area is described in detail in the Baseline Report 304E - Water 

Resources Data Report.   

 

The United States Geological Survey (USGS) monitors flow and water quality at gaging 

station 06307740, (Otter Creek at Ashland, MT).  Otter Creek drains an area of 

approximately 711 square miles, of which approximately 709 square miles are above the 

USGS gaging station.  During the period of record (1972 to present), flows ranged from zero 

to more than 650 cubic feet per second (cfs).  During the baseline period, flows at the gaging 
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station ranged from a few cfs to 650 cfs, suggesting the flows were near maximums for the 

drainage.   

 

Water in Otter Creek is generally a sodium-sulfate type or a sulfate type with no dominant 

cation.  Sodium adsorption ratios (SAR) in Otter Creek at monitoring sites established for the 

baseline study were between 4.81 and 8.54; while specific conductance (SC) averaged 3,825 

µmhos/cm.  Water analyzed by the USGS at the gaging station near Ashland (06307740) had 

an average SC of 3,507 µmhos/cm and SAR of 6.19 during the period from June 2010 to 

June 2012, which partially overlaps the period of baseline study.  Complete baseline surface 

water data are in the Baseline Report 304E - Water Resources Data Report. 

 

4.1.1 Surface Water Uses 

Surface water from Otter Creek in the vicinity of the proposed mine is available for livestock 

and wildlife use.  Hay crops in the valley bottom benefit from natural flooding during spring 

runoff in most years.  Livestock and wildlife use Otter Creek, local impoundments, springs, 

and stock tanks for water sources.  Surface water from Otter Creek provides a natural 

irrigation source during times when stage levels exceed normal bankfull levels.  Once out of 

the channel the water floods the lower terraces and in some areas is distributed across the 

floodplain with local spreader dikes.  Water levels may exceed bank full levels during spring 

runoff or in response to intense precipitation events.  Such flow was observed in 2010, 2011, 

2013 and 2014 when ice jams caused the creek to leave its banks.  Discharge in excess of 

bankfull levels was not observed during any other portion of the baseline period.  According 

to local landowners (Ross Denson, personal communication) efforts to irrigate using Otter 

Creek water were attempted in the past and were unsuccessful.  This practice is no longer 

conducted within the Study Area. 

 

There are no identified uses of surface water for domestic water supply purposes.  Farms and 

ranches in the area rely on groundwater wells for water supply.  Further, there are no known 

industrial uses of surface water in the vicinity of the Study Area.  
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4.1.2 Surface Water Rights 

The Montana Department of Natural Resources on-line Water Right Query System 

(http://nris.mt.gov/dnrc/waterrights/default.aspx) was used to identify water rights in the 

vicinity of the Otter Creek Coal Tracts.  An advanced search was conducted in October 2014, 

which includes the area for the entire anticipated life of mine, for water right diversions 

within the following sections: 

 T3S, R44E, Sections 23 – 27, 34 – 36, 

 T3S, R45E, Sections 2 – 36, 

 T3S, R46E, Sections 18, 19, 30, 31, 

 T4S, R44E, Sections 1 – 3, 10 – 14, 24, 

 T4S, R45E, Sections 1 – 30, 34 – 36, 

 T4S, R46E, Sections 6, 7, 18, 19, 30, 31, 

 T5S, R45E, Sections 1 – 3, and 

 T5S, R46E, Section 6. 

 

Details for each surface water right are listed in Table 4-1 of Baseline Report 304E - Water 

Resources Data Report, including: water right number, registered owner(s), type of water 

right, water right status, priority date, water source, purpose of use, location of point(s) of 

diversion, and appropriated flow rate and/or volume (if given).  Water rights with a status of 

“dismissed” or “withdrawn” were removed from the list.  There were no water rights with a 

pending status at the time of the search. 

 

Probable hydrologic consequences or potential impacts to surface waters rights and uses are 

discussed below in Sections 5.0 and 6.4.    

 

4.2 IMPOUNDMENTS 

Six impoundments, all constructed using earthen embankments, were monitored in and 

around Tract 2.  Pond P1 contained water throughout most of the baseline period and showed 

indications that the pond typically contains water.  This pond was dry in September and 

December of 2012.  Pond P2 only contained water during one visit, following a period of 
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ground thaw, snowmelt runoff, and rainfall.  Pond P2 is very shallow due to silting in and has 

a small volume capacity.  

 

Pond P3 is located along the north boundary of Tract 2 in a tributary to Threemile Creek.  

Pond P3 contained water throughout most of the baseline period, but does not show evidence 

that the pond perennially contains water.  This pond was observed to be dry in both May of 

2012 and 2013.  There is a lack of cottonwood trees and riparian vegetation around the pond 

and no evidence of springs.  Livestock frequently use the pond as a source of drinking water, 

resulting in heavily impacted banks, possibly explaining the lack of vegetation. 

 

Pond P4 is located near the northeast corner of Tract 2 and is within the proposed mining 

area.  This pond is a larger impoundment and contained water throughout the baseline period.  

The pond filled in response to spring snowmelt and rainfall events and water discharged 

through the spillway resulting in flood irrigation to fields on the north facing flank of 

Threemile Creek.  Water levels in the pond quickly dropped due to seepage through the 

bottom, uptake by numerous cottonwoods growing in and around the pond, and evaporation.   

 

Pond P5 (Shorty Creek Reservoir) is located east of Tract 3 on Custer National Forest (CNF) 

property in Shorty Creek.  This pond contained water throughout the monitoring period and 

appears to typically contain water year-round. 

 

Pond P6 is located on Tenmile Creek.  This pond contained water throughout the monitoring 

period and appears to be a year-round source of water. 

 

4.3 WETLANDS 

Wetland areas on Tract 2 were mapped during baseline vegetation studies.  Results are in 

Baseline Report 304J - Vegetation. 
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4.4 DRAINAGE DENSITY 

Drainage density is a function of climatic variables (precipitation and runoff) and a 

combination of lithologic, vegetational, edaphic, and topographic influences (Knighton, 

1998).  Basins in semi-arid climates typically have the greatest drainage densities because 

they receive enough rainfall to generate runoff, but not enough to sustain impeding 

vegetation.  

 

Drainage densities were calculated for the proposed mine area.  Drainage density is defined 

as the total channel length in a given basin divided by the basin area.  This results in a density 

of drainage channel per unit area.  Table 4-1 contains calculated drainage densities based on 

pre-mine topography.  Pre-mine drainage densities for individual drainage basins within the 

mining area ranged from 0.28 to 66.94 miles per square mile (mi/mi
2
).  The average pre-mine 

drainage density was calculated at 2.97 mi/mi
2
.  

 

4.5 GROUNDWATER SYSTEM 

Baseline Report 304E - Water Resources Data Report contains baseline data for the Study 

Area, including a detailed description of the hydrogeologic system.  

 

Groundwater in the Study Area occurs in alluvium, overburden, Knobloch Coal, clinker, and 

Knobloch Coal underburden.  Water table and potentiometric maps showing current 

groundwater flow conditions are in the Baseline Report 304E - Water Resources Data Report.  

These maps show that groundwater in the overburden and Knobloch Coal flows toward Otter 

Creek, likely providing recharge to clinker and alluvium in the valley bottoms and along its 

margins.  Underburden follows a similar pattern, but the influence on the Otter Creek valley 

is not as distinct. 

 

Alluvial groundwater is present in the valley bottoms along Otter Creek, Tenmile Creek, 

Threemile Creek, and Home Creek.  Water in these drainages occurs under unconfined to 

semi-confined conditions.  However, water in Otter Creek also exists in areas under 
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confined/semi-confined conditions.  Otter Creek alluvium exhibits evidence of recharge from 

the creek, although the magnitude is relatively small and response times longer than would be 

observed if there were direct contact with the creek.  Alluvial recharge appears seasonally in 

response to elevated stream water levels resulting from occasional ice-jams and runoff due to 

snowmelt and larger precipitation events occurring primarily in early spring and fall.  During 

the remainder of the year, Otter Creek is a gaining stream from alluvial discharge.  Fine-

grained sediments (silt and clay) that are present over much of the floodplain limit recharge 

from the creek, and conversely limit flow from the alluvium to the creek.   

 

Alluvium in Tenmile, Threemile, and Home Creek is typically unconfined, although 

localized semi-confined conditions also occur.  Surface water flow in these drainages is 

intermittent in some reaches; these drainages through the Study Area are mostly ephemeral.  

Runoff water in these reaches appears to readily infiltrate into the alluvium, providing 

recharge to the groundwater system.  Exceptions to this scenario are in Tenmile Creek and 

Threemile Creek near the east Tract 2 boundary where groundwater is near the surface.  

However, surface water quickly infiltrates into downstream alluvium, particularly in 

ephemeral reaches where the flanks consist of clinker.. 

 

Clinker is comprised of thermally altered and collapsed overburden formed by the burning of 

previously underlying coal.  The degree of thermal metamorphosis varies depending on the 

temperature of the burn, thickness of the overburden, vertical fracture patterns, moisture, and 

duration of burn.  As the coal burned, its volume decreased.  As this occurred, or some period 

of time after burning concluded, the overburden collapsed into the void left by the burned 

coal.  The result is an interval of highly fractured and often highly permeable rock, capable of 

transmitting large volumes of groundwater.  Ash layers and/or layers of unburned coal 

sometimes remain at the base of the coal interval.  These ash and/or coal layers typically have 

much lower permeabilities than the overlying clinker, and correspondingly cannot transmit as 

high of volumes of groundwater.   
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Water columns (saturated thickness) in clinker are dependent on structure, proximity to zones 

of lower hydraulic conductivity, and discharge points.  For example, water columns adjacent 

to the Knobloch Coal in Tract 2, in the vicinity of well C-4, are relatively high due to the 

recharge from coal on the east and alluvium on the west, both of which have lower hydraulic 

conductivity than the clinker, and connection with Otter Creek to the south.  These three 

factors cause groundwater to accumulate in the clinker as storage with a nearly level gradient.  

To the north near well C-1, the base of the clinker is at a higher elevation due to an upward 

structural trend, the supply of groundwater is less, and the unit is better drained (not bound by 

units of lower permeability).  Only a foot or so of water is present at this location and 

permeability of the saturated portion of the unit is very low.  Very little groundwater moves 

through this area.  

 

With the exception of well C-4, water elevations in clinker wells and alluvial wells in the 

clinker zone are virtually identical at 3025-3026 feet.  This includes wells C-1, C-2, C-3, A-1 

on Otter Creek at the Stevens crossing, and AVF6 in lower Threemile Creek.  Wells at AVF5 

in lower Home Creek have slightly lower water elevations at 3022-3025 feet.  

 

The clinker is in contact with the alluvium from approximately AVF3 downstream to AVF2 

above the Home Creek confluence.  Where the groundwater elevation in the alluvium is 

above about 3025 feet, the clinker acts as a drain, with water moving to the clinker from the 

alluvium.  Conversely, where the groundwater elevation in the alluvium is lower, the gradient 

is reversed and alluvium is recharged from the clinker.  The equilibrium point is likely near 

well A1 and the AVF7 piezometer cross-section.   

 

The average thickness of the Knobloch Coal seam is approximately 70 feet in Tract 2.  This 

coal is generally dense, and cleated in multiple directions.  Hydraulic conductivity of the coal 

varies depending on the degree of interconnection and extent of the interconnected cleats.  

Zones with higher hydraulic conductivity also occur where weathering of the coal has 

occurred, near outcrops where overburden and lateral containment have been removed by 

erosion, and where erosion has cut directly into the seams under creeks or drainages.  
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Faulting has not been identified on Tract 2, but coal in the vicinity of a fault or other 

structural anomaly tends to be highly fractured and highly transmissive. 

 

Underburden water at in the study area is present in the Tongue River Member of the Fort 

Union Formation.  Groundwater was found in the porous grained sedimentary rocks as well 

as coal interpreted to be the Flowers-Goodale seam, approximately 100 feet below the 

Knobloch Coal.  Deeper waters are present in the Tullock Creek Member, but were not 

studied during the baseline investigation. 

 

4.5.1 Groundwater Flow 

Groundwater flow in unconsolidated and bedrock units have been well documented for the 

Study Area and proposed mine area (Baseline Report 304E - Water Resources Data Report).  

Groundwater flow in the alluvial system is restricted to the valley bottoms along Otter Creek, 

Tenmile Creek, Threemile Creek and Home Creek.  There is likely also flow in alluvium of 

Shorty Creek, east of Tract 2, but this system was not evaluated during the baseline 

investigation.  Groundwater flow in these deposits typically follows the downstream direction 

of surface water features, under gradients similar to surface topography.  Depth to water in 

these drainages ranges from a few feet to more than 20 feet below ground surface.  Along 

Otter Creek, slight gains and losses are observed due to inflow from alluvial and clinker 

hydrostratigraphic units. Tributary drainages on the west side of Otter Creek on Tract 3 

typically are ephemeral and do not have developed alluvial flood plains.   

 

Gradients in clinker are nearly flat in contrast to the surrounding bedrock and alluvial systems 

due to very high hydraulic conductivity.  Water entering the clinker flows parallel to Otter 

Creek in a general north-northwesterly direction.  It is likely the interchange of waters 

between the creek and the clinker is limited, although where in direct contact, water from the 

creek recharges the clinker.  The amount of flow between the creek and the clinker is limited 

by the presence of very fine-grained deposits which underlie the creek and extend across the 

valley and/or by fine grained sediment that has filled interstitial pore spaces where the creek 
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flows across the clinker.  In the lower portion of the drainage, where the clinker gets 

structurally pinched out, water flows either into the adjacent alluvium or into the creek. 

 

Groundwater occurrences in the overburden are inconsistent, with lateral continuity only 

existing locally.  Channel sandstones, which have been described in portions of the Fort 

Union Formation (Lopez and Heath, 2007), were not positively identified in overburden 

wells installed during the baseline investigation.  Water is present in the overburden in the 

northeast part of Tract 2, but absent through the middle and southeastern (e.g. at well B7) 

portions of the tract.  Groundwater is present in overburden sandstone strata that are in 

contact with the coal at well K-2, but this sandstone was absent at well K-3.  Overburden in 

Tract 2 had limited groundwater at B4-O and was not observed at the B3 battery.  Water was 

absent in the overburden north of Tract 3 at B2-O and within Tract 3 at the B9 battery.  Water 

was present in the overburden in Tract 3 at well battery B8. 

 

Groundwater flow in the Knobloch Coal is towards Otter Creek on all three coal tracts, 

suggesting a connection between the coal and the unconsolidated sediments that occupy the 

valley, and the creek.  Groundwater flow patterns do not indicate discharge to Tenmile Creek 

or Threemile Creek alluvium, although there likely are limited zones of communication in 

both drainages.  The Home Creek alluvium is isolated from the Knobloch Coal by clinker 

along its entire length through Tract 1.  The Knobloch Coal is under hydrostatic pressure.  

Coal on the east side of Tract 2 is under a substantial pressure head (greater than 100 feet at 

wells B7 through KL), while the amount of artesian head decreases towards Otter Creek and 

is absent where in contact with alluvium or clinker. 

 

Groundwater flow in the Knobloch underburden is generally northward.  Potentiometric 

contours bend around the creek suggesting a possible discharge area in the valley bottom.  

Such discharge could be from flow into deeper alluvium or the result of depressurization by 

flowing water supply wells constructed in the deeper Tullock Creek Member.  Hydrostatic 

pressure in the Tullock Creek Member has created a potentiometric surface that is higher than 

the ground surface elevation at several wells in the Otter Creek valley. 
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4.5.2 Private Wells 

Private wells were inventoried by searching the Montana Bureau of Mines and Geology 

(MBMG) Groundwater Information Center (GWIC), and Montana Department of Natural 

Resources and Conservation (DNRC) databases.  Wells identified in that search are shown on 

Plate 2 and Table 2-13 of the Baseline Report 304E – Water Resources Data Report.  The 

initial inventory conducted in 2011 and 2012 and presented in Baseline Report 304E was 

expanded in 2014 as discussed in the Section 6.0 below. Some wells were also identified in 

the field that could not be correlated to GWIC information and are listed as unknown or 

unused.  Wells identified in the inventory had the following uses listed. 

 Exploration boreholes  

 Domestic Wells  

 Domestic/Stockwater  

 Dry holes (boreholes)  

 Industrial  

 Irrigation  

 Monitoring/Research  

 Petroleum well  

 Public Water Supply  

 Stockwater  

 Stockwater/irrigation  

 Test holes  

 Unknown  

 Unused  

Note that wells installed during this investigation are not included in the list.  It is assumed 

that the wells will remain in place under the current use as monitoring wells for the 

foreseeable future. 

 

4.6 SPRINGS 

Baseline Report 304E - Water Resources Data Report (Section 2.6.2 and Appendix G) 

describes the seeps and springs inventory process conducted for this permit application.  That 

report contains maps and a listing of springs and seeps inventoried in the fall of 2010 and 
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2011 (Plate 3).  Full access was available for the spring and seep inventory in the proposed 

mine area.  However, access was not available for some portions of Tract 1 and Tract 3 or for 

some lands within the primary hydrologic study area north and west of the tracts.  Aerial 

photos, topographic maps, and electronic databases were examined to identify potential 

springs and seeps in areas with no available ground access.  Electronic databases consulted 

for identification of seeps and springs included those maintained by the Montana DNRC for 

water rights and GWIC.  Published reports that were consulted for information to identify and 

locate seeps and springs by the MBMG included:  Wheaton, et.al (2008 and 2013), Donato 

and Wheaton (2004a and b) and Miller, et.al. (1980).    
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5.0  SURFACE WATER – PROBABLE HYDROLOGIC CONSEQUENCES 

 

5.1 SURFACE WATER QUANTITY - PROBABLE HYDROLOGIC 

CONSEQUENCES 

5.1.1 Runoff From Precipitation - Probable Hydrologic Consequences 

During mine operations, runoff from precipitation and snowmelt will be contained and 

directed to mining pits or to designed containment structures such as excavated ponds, traps 

and depressions.  Water from designed containment structures will be managed to optimize 

benefits to the hydrologic system.  It is anticipated that contained runoff water will be utilized 

for haul and access road dust control; will infiltrate to recharge unconsolidated sediments and 

bedrock below the structures; or will be allowed to evaporate.  Discharge to surface waters is 

not planned during normal operations, but may occur on rare occasions in response to runoff 

events exceeding the design capacity of the drainage control system. 

 

Detention of runoff water and will reduce peak flows from the mine area to Otter Creek.  

Surface water runoff and sediment modeling predicted minor flows to Otter Creek to occur 

during a 100 year/6 hour storm during mining operations.  No discharge was predicted during 

the 2-year, 24 hour storm or the 10-year, 24-hour storms during mining operations (Table 1 – 

Appendix A).  Management of runoff water through stormwater containment structures will 

regulate the timing and magnitude of releases to Otter Creek.  Note however, that the mine 

area is small compared to the Otter Creek Drainage basin as a whole, as shown below.  

Therefore, changes in flow observed in Otter creek resulting from water containment and 

regulated discharge will be imperceptible.  Results of surface water runoff and sediment 

transport modeling is included in Appendix A.  

Drainage 

 

Area 

(acres) 

Controlled 

Acres 

% of Drainage 

Controlled 

Otter Creek Total 455,040 4,617 1.0% 

Otter Creek Upstream of Otter Creek Mine 377,924 4,617 1.2% 

Tenmile Creek 27,520 0 0% 

Threemile Creek 32,908 1,143 3.5% 

Home Creek 37,760 0 0% 
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5.2 SURFACE WATER QUALITY – PROBABLE HYDROLOGIC 

CONSEQUENCES 

5.2.1 Contained Surface Water 

Runoff from precipitation and snowmelt will be contained and directed to ponds, traps, 

depressions and/or mining pits.  Baseline data has shown that surface water runoff during and 

following intense storm events may transport high amounts of sediment.  These sediments 

may contain elevated amounts of total recoverable iron, manganese, and aluminum, as 

indicated by data collected in the baseline monitoring period (See Baseline Report 304E - 

Water Resources Data Report – Appendix E).  Under current conditions, this sediment 

potentially reaches active waterways, including Otter Creek.  The sediment load may cause 

temporary increases in turbidity and/or deposition in the stream channel.  During mining 

operations, an overall reduction of sediments to Otter Creek and associated tributaries will 

occur due to runoff containment measures.  The result will be a net reduction in sediment 

load to Otter Creek resulting in a very small net improvement of downstream surface water 

quality.  The reduced contributions of sediment to Otter Creek from the mine area during 

mining will be difficult to measure downstream of the mine area, and are expected to be 

within current sediment load variability.  As discussed in the previous section, the mine area 

contributes runoff from approximately 1.0 percent of the entire Otter Creek watershed.  

 

Water discharged as a result of high snow melt and/or rainfall runoff will be of short duration 

and consist of melt or rain water, and will be low in dissolved solids, but may carry 

suspended sediment, although most sediment will be captured by ponds.  Any water 

discharged during frozen ground conditions will not infiltrate, but will flow downstream and 

presumably enter Otter Creek.  Water contained during frozen ground conditions will likely 

be of high quality because of the lack of effective ground contact.  Discharge of this water 

will have no negative affect on the quality of area surface water bodies. 

 

Water discharged from containment ponds will be of similar or better quality to that of Otter 

Creek.  For example, water quality samples for the baseline period collected Fortune Coulee, 

an ephemeral tributary to Otter Creek in the proposed mine area during the baseline period 
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showed average SC and SAR values of 349 µmhos/cm and 0.71, respectively, with 

corresponding ranges of 173 to 536 µmhos/cm, and 0.29 to 0.65.  These values are 

considered representative of snow melt and stormwater runoff water in the area.  Based on 

these values, there will be an overall improvement in water quality by controlled releases of 

stormwater runoff.  . 

 

Once mining is completed, the site will be reclaimed.  As shown on the channel profiles 

included in Exhibit 313D – Reclamation of Drainage Basins, post mining channels are 

designed with a shallower gradient than those that currently exist, due to the removal of 60 to 

70 feet of coal.  Since these channels are to be constructed with similar cross sections and 

will drain close to the same drainage area, the stream velocity in the post mine drainage 

channels would be similar or slightly less than they were prior to mining.   

 

Salvaged soils will be redistributed and the site will be revegetated with adapted plant 

species.  Once vegetation is established, restriction to overland flow is expected to be near 

that currently observed.  However, gradients will be flatter.  The flatter surface gradients are 

expected to result in lower runoff velocities.  Lower velocity surface water flow is less 

erosive.  Therefore, it is expected that sediment transport from the site, following 

establishment of vegetation, will be lower than currently observed levels.  Sediment loads, 

shown in tons (Table 1 of Appendix A) for various storm events, are predicted to be similar 

or slightly lower during post mining runoff in all of the watersheds that do not contain 

permanent ponds.  In watersheds 1, 5, 7, 12, and 15, permanent ponds significantly reduce the 

sediment yield post mining since they act as a sediment trap for the drainage area above the 

pond.  

 

Any potential changes in water quality or quantity in Otter Creek due to mining will be 

imperceptible and within the natural variability of sediment load and flow observed in Otter 

Creek.  .Subsequently no impacts to water quality in the Tongue River will occur as a result 

of operations at the Otter Creek Mine. 
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Because there will be no perceptible impact to Otter Creek flows and water quality, no 

impacts to aquatic life found in Otter Creek are expected.  This includes species identified 

during baseline aquatic surveys including the brassy minnow and plains minnow, potential 

species of concern, and the mayfly, caenis youngi, a species of concern, as listed by the 

Montana Heritage Program. 

 

5.2.2 Managed Groundwater Storage– Probable Hydrologic Consequences 

Dewatering of the Knobloch Coal will be necessary during mining.  Mine dewatering rates 

are expected to be greatest during the first two to five years of pit development.  During the 

initial box cut, and as necessary throughout the life of the mine, water from the pit will be 

routed to storage facilities within the mine area, inside the coal buffer.  This water will be 

utilized for dust suppression on mine roads, some water will be taken up by 

evapotranspiration and some will infiltrate into mine spoils. 

 

Because the coal buffer has a constant hydraulic conductivity, groundwater flow through the 

buffer from mine spoils will be less than baseline flow from the Knobloch Coal, until 

groundwater recovers to or above premine levels.  Reduced flow from the spoils will result in 

a minimal reduction in groundwater that is delivered to Otter Creek Alluvium and ultimately 

to Otter Creek.  Water levels are projected to fully recover in the mine spoil between 15 and 

50 years after mining (see Chapter 6.0 and Appendix B).       

 

5.3 IMPOUNDMENTS - PROBABLE HYDROLOGIC CONSEQUENCES 

Four ponds (P1, P2, P3 and P4 – see locations shown on Map 10 - Environmental Monitoring 

Stations) are within the proposed mining area.  All four ponds will be removed by mining.  

There exist owners of record for water rights on three of these four ponds as listed on Table 

5-1.  It is anticipated that these impoundments will contain water through the early years of 

mining and their use will be not be impacted.  However, as mining progresses, the ponds will 

need to be modified to contain sediment and runoff.  These ponds will be replaced with 

permanent ponds as shown on Map 14 – Post Mine Drainage Plan.  The replacement ponds 

are designed to fill with the runoff from a 2-year, 24-hour storm in the fully reclaimed 
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condition.  Each pond’s storage capacity also includes the average annual sediment yield in 

the final grading condition, and 10 times the average annual sediment yield in the fully 

reclaimed condition.  Design information for permanent ponds is presented in Appendix A of 

Exhibit 315A – Ponds and Embankments.  The reclaimed permanent ponds will serve as a 

livestock, and wildlife water source.   

 

Pond P5 (Shorty Creek Reservoir) will be not be impacted by mining.  The source of water 

for Pond P5 is from runoff and local springs issuing from overburden units that will be 

unaffected by mining.  Runoff to the pond is primarily from drainages that are outside of the 

Otter Creek Mine area.  One tributary to the pond originates in Tract 2.  However, mine plans 

restrict mining to areas opposite the surface water divide, so runoff to the pond from mine 

disturbances will not occur.  USDA Forest Service is the owner of record for water rights 

from this reservoir (Table 5-1).  

 

Pond P6 will not be affected by mining in Tract 2.  This pond receives recharge from 

upstream areas of Tenmile Creek, either as runoff from precipitation and snowmelt, or as 

water issuing from the alluvium under the pond.  The Denson’s are the current owners of 

record for water rights from this reservoir (Table 5-1). 

 

5.4 WETLANDS - PROBABLE HYDROLOGIC CONSEQUENCES 

Wetlands identified in the proposed mine area during vegetation baseline studies (Baseline 

Report 304J - Vegetation Inventory) were limited to stock pond margins, pond seepage areas 

and riparian zones along the banks of Otter Creek.  Disturbed wetland features will be 

addressed in mine reclamation plans in the form of wildlife habitat enhancement features 

and/or eventual conversion of sediment ponds to permanent ponds. Information on wildlife 

habitat enhancement features is included in Exhibit 313G – Revegetation Plan. 

 

5.5 DRAINAGE DENSITY - PROBABLE HYDROLOGIC CONSEQUENCES 

Post-mine drainage densities were calculated based on post-mine topography.  Similar 

methodologies were used in that measured drainage lengths shown on Map 12 – Post-Mine 
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Topography were divided by area in associated drainage basins.  Calculated pre-mine 

drainage densities were 2.97 mile per square mile.  Calculated post-mine drainage densities 

were 3.18 mi/mi
2
.  This equates to a pre-mining to post mining drainage density change of 

about seven percent.  Table 4-1 compares calculated drainage densities for pre-mine and post-

mine topography.  Design of reclaimed drainages is addressed in detail in Exhibit 313D – 

Reclamation of Drainage Basins. 

 

5.6 SURFACE WATER USES - PROBABLE HYDROLOGIC CONSEQUENCES 

Although some short-term, localized uses of surface water may experience abbreviated 

interruption, the current uses of surface water will not be impacted by the proposed mine.  

Active irrigation is not practiced in the vicinity of the proposed mine, or in Tract 1 and Tract 

3.  Irrigation structures are limited to spreader dikes in the Otter Creek drainage and in some 

tributaries.  These structures provide passive flood irrigation by good quality water during 

runoff events.  According to local landowners, past attempts to dam Otter Creek and divert 

flow for flood irrigation were not successful, presumably due to elevated TDS and SAR. 

 

Livestock and wildlife will still have access to Otter Creek, springs and seeps, as well as 

water containment structures associated with the mine and permanent ponds planned for the 

mined area after mining.  Recreational uses involving surface water will also continue as 

available during pre-mine conditions outside of the mine permit boundary. 

 

Following reclamation, surface water uses will be the same as pre-mine uses.  Water sources 

will exist in Otter Creek, Fortune Spring, Coal Creek Spring, and seasonally in topographical 

low spots or impoundments 
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6.0 GROUNDWATER – PROBABLE HYDROLOGIC CONSEQUENCES 

 

6.1 GROUNDWATER FLOW – PROBABLE HYDROLOGIC CONSEQUENCES 

A groundwater model was developed to aid evaluation of potential hydrologic impacts 

associated with groundwater flow, groundwater quality, re-establishment of groundwater 

levels, including influences of surface water flow, and surface water quality.  The model is a 

three-dimensional model consisting of nine different layers representing different 

hydrostratigraphic units that include: Knobloch Coal, Otter Creek alluvium, clinker, 

ephemeral tributaries, interburden and underburden.  The model domain extends 

approximately six miles to the north and south of the mine, ten miles to the east, and west to 

the Tongue River.  Appendix B contains a detailed description of the groundwater model, 

input parameters, and associated results.  Results discussed in this section are largely the 

result of predicted changes from simulations produced by the model. 

 

Water levels declined by less than two feet in the alluvial observation wells during simulated 

mine dewatering.  The maximum water level decline was observed at well A6, less than one 

mile west of the mine area.  Approximately 1.6 feet of drawdown were predicted at A6 

during the simulation.  Water levels at this well were about five to seven feet below ground 

surface during the baseline monitoring period.  Average seasonal fluctuation of about two 

feet was observed.  Assuming drawdown induced by mining is additive, water levels would 

be expected to be seven to nine feet below ground surface, within limits of sub-irrigation, and 

would have no effect on current groundwater uses.  Water levels in the alluvium at A8, near 

the permit boundary are predicted to decline approximately one foot during mining.  

 

Gradual but discernible changes in clinker water levels are predicted by the model.  The 

maximum decline in water level predicted at C-3 was 2.2 feet.  This is likely a conservative 

projection based on the relatively low K assigned to clinker in the model. 

 

Groundwater present in the overburden in the mine area will be removed during mining.  

Overburden will be converted to unconsolidated spoil as mining progresses.  The area will be 
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graded and reseeded once topsoil is redistributed.  Recharge will begin immediately upon 

spoil placement as a combination of precipitation recharge and lateral flow from coal buffer 

areas.  Spoil will also receive recharge from mine water storage impoundments located 

within the mine workings. 

 

Removal of the Knobloch Coal will remove this hydrostratigraphic interval from within the 

mine area.  As mentioned in the previous paragraph, overburden removed during the 

stripping process, will be backfilled as spoil.  This will result in spoil being laterally in 

contact with coal in the reclaimed mine area.  A buffer layer of unmined coal around the 

perimeter of the former pits, which is intended to limit flow into the pit from clinker and 

alluvium during mining, will be left in place.  

 

As the coal is removed and dewatered, a hydrologic low will result in the mine.  Since the 

Knobloch Coal is generally under hydrostatic pressure, the area in the active pit, and in 

dewatering areas upgradient of active pits, will experience depressurization.  When 

potentiometric levels are drawn below the top of the coal, unconfined flow conditions will 

exist.  Potentiometric heads in the coal upgradient of the mine will be reduced.  Hydrographs 

in Figure 5-6 of Appendix B illustrate reductions in potential based on groundwater model 

simulations.   

 

Drawdown predicted by the transient model was greatest for the Knobloch Coal east of the 

Otter Creek Mine; hydrographs for two wells completed in the Knobloch east of the mine 

area are included in Appendix B, Figure 5-6.  The magnitude of drawdown from dewatering 

will be greatest east of the mine because there are no proximate hydrologic boundaries 

included in the model.  Drawdown extends to approximately 9 miles east of the mine to the 

extent of the five foot drawdown.  Note, however, that predicted drawdown east of the mine 

assumes homogeneous, isotropic conditions exist throughout the entire area.  This condition 

is unlikely to exist.  Heterogeneities and anisotropic conditions are likely to result in a 

reduction in the actual amount of drawdown that will actually occur.   
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Modeled drawdown was greatest within one mile of the dewatering simulation; and projected 

drawdown resulted in water levels below the top of coal (i.e. unconfined conditions) at the 

CNF boundary.  Groundwater model simulations predict 70 to 80 feet of drawdown at the 

CNF boundary.  Drawdown diminishes with distance from the mine, with the extent of 

drawdown projected at approximately nine miles east of the mine.  Note the hydrographs 

(Figure 5-6, Appendix B) that modeled water levels nearly recovered within 15 to 50 years 

after mining ceases.   

 

Two underburden hydrostratigraphic units were included in the model: the first sandstone 

aquifer/Flowers-Goodale coal.  The first water-bearing bedrock interval occurs between 20 

and 100 feet beneath the Knobloch Coal and is coincident with a thin coal seam thought to be 

the Flowers-Goodale coal and/or a sandstone bedrock interval.  The thickness of this water-

bearing interval ranges from eight to 53 feet as observed in the baseline well monitoring 

network.  For the sake of the conceptual model, this unit is assumed to be laterally continuous 

across the model domain; however, lateral continuity of a horizon this thin is rarely observed 

in the Fort Union Formation over such a vast area.  Modeling predicted drawdown in this unit 

was slightly greater than two feet during mining.   

 

The second underburden interval is a thicker contiguous sandstone which has been 

encountered in the Otter Creek monitoring well network at depths between 159 feet and 224 

feet beneath the Knobloch Coal.  The thickness of this sandstone observed in the Otter Creek 

monitoring network ranges from 38 to 90 feet.  Drawdown resulting from mine dewatering 

was imperceptible in the model layer used to represent this deep underburden sandstone.      

 

Otter Creek Coal will rely on a local source of groundwater for domestic use (i.e. potable 

water, showers, etc.) during mine operation.  Based on observations at other mines, it is 

estimated that the Otter Creek mine will use two million gallons annually (3.8 gpm) for 

domestic purposes.  The source of this water will likely be the deeper productive sandstone 

aquifer encountered at some of the monitoring well batteries during the baseline study.  This 

sandstone is used by local residents as a stock and/or domestic water source; and the required 
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pumping rate for the domestic well is consistent with pumping rates of wells already 

completed in this aquifer.  Potential influences of the domestic well on the sandstone aquifer 

were evaluated in two forward analytical solutions.  Specifically, forward projections were 

made using analytical results from pumping tests previously completed at wells B5-U and 

B10-U.  These wells were chosen because, although they are completed in the same aquifer, 

hydraulic properties at the wells are variable.  Transmissivity estimated at well B5-U was 32 

ft
2
/day; and transmissivity estimated at well B10-U was 56 ft

2
/day.  Both previous analyses 

were made using the Theis method.  This method was further applied to the forward 

projections.  Drawdown for both wells was projected for a period of 20 years at a pumping 

rate of five gpm, followed by a period of groundwater recovery.  Drawdown estimated by the 

forward projection of B10-U aquifer test results at the end of the 20 year projection was 34 

feet at the pumping well, ten feet at one half mile, and two feet at a distance of ten miles.  

Drawdown projected after 20 years of pumping based on results at B5-U was 59 feet at the 

pumping well, 16 feet at one half mile, and two feet at a distance of ten miles.  Forward 

projection results are presented in Figure 6-1.   

 

6.1.1 Re-Establishment of Groundwater Levels 

Estimation of groundwater level recovery was accomplished using a groundwater flow model 

to simulate pre and post-mine water levels.  Transient model runs were conducted to simulate 

mine dewatering and recharge to the mine area and surrounding aquifers following mining.  

Groundwater contours and hydrographs illustrate results of the simulations (Appendix B).   

 

  Predicted water levels in alluvium were fully recovered approximately 20 to 30 years after 

the end of mine dewatering.  Perceptible changes in alluvial water levels will likely subside 

in much less time due to inflow of ground and surface water from upstream. 

 

As indicated by model results (Appendix B), water level recovery in mine spoils is highly 

spatiotemporally variable.  Mine spoils nearest the western mine boundary, bordered by 

clinker and alluvium, are projected to recover first.  In model simulations, the direction of 
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groundwater flow returns to the pre-mine orientation between 25 and 30 years after 

dewatering efforts end.   

 

Water levels in Knobloch Coal adjacent to the mine area are projected to recover at rates 

similar to mine spoils discussed above.  Recovery rates will vary based on proximity to 

hydrologic boundaries, such as alluvium, clinker, or surface water features.  For example, 

water levels in Knobloch Coal outside the mine area but adjacent to Threemile Creek or 

Tenmile Creek are expected to recover faster than water levels in coal east of the mine area.  

Note the hydrographs and potentiometric contours generated by the model (Appendix B) that 

predict water levels nearly recovered in off-site coal within 50 years of the dewatering 

simulation.  

 

6.2 GROUNDWATER QUALITY – PROBABLE HYDROLOGIC CONSEQUENCES 

Overburden in the mine will be stripped to allow removal of the Knobloch Coal.  Overburden 

will then be placed as spoil material to fill the interval previously occupied by the coal.  

Groundwater from the un-mined Knobloch Coal east of the mine will flow into the spoil.  In 

lower elevations along the western part of the mine, water from clinker and alluvium will 

flow into the spoil through a coal barrier providing recharge until water levels in the spoil rise 

to a level where groundwater flow directions will approximate current patterns.  Precipitation 

recharge will also occur.  Initial post-mine recharge rates from precipitation will likely be 

higher than current recharge rates, due to higher vertical permeabilities created by mining 

disturbance.  Once the area is reclaimed and vegetation is established, recharge rates from 

precipitation to the spoil should approximate current conditions.   

 

Water quality within the spoil is expected to be more similar to that observed in overburden, 

than the coal aquifers that it replaces (Van Voast, Hedges, McDermott, 1977).  Variability in 

quality can also be expected between areas.  An initial increase in total dissolved solids 

(TDS) can be expected since stratified overburden deposits will be excavated and replaced in 

an unstratified condition with considerable mixing.  This will result in more chemical 

constituents becoming available for dissolution and transport in groundwater (Van Voast and 
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Hedges, 1975).  Van Voast et al. (1988) noted that average TDS concentrations in mine spoil 

of southeastern Montana mines are 50 to 200 percent higher than average concentrations in 

undisturbed aquifers.  Given an approximate average TDS of 1750 mg/L for the Knobloch 

Coal, TDS in spoils groundwater could range from 2,650 to 5,250 mg/L.  Groundwater from 

overburden monitoring wells in the study area ranged from 1,030 to 7,020 mg/L TDS.  

 

Overburden samples were collected from 55 boreholes during the 2011 Ark Land exploration 

drilling program.  Samples were submitted for chemical analysis of saturated paste extract.  

Saturated paste extracts provide a conservative estimate of initial spoils groundwater quality.  

Concentrations of major ions in saturated paste extracts have been found to compare 

favorably to those occurring in the first pore volume of column leachate (Van Voast et al., 

1978).  Weighted averages of saturated paste extract results were calculated for pH, specific 

conductance (SC), and sodium adsorption ratio (SAR).  Resulting values were: pH = 8.0;  

SC = 3,820 mhos/cm; and SAR = 19.1.  For comparison purposes, average values of the 

same parameters for baseline water quality samples from the Knobloch Coal were; pH = 8.4, 

SC = 2,499 mhos/cm, and SAR = 35.3 (Baseline Report 304E - Water Resources Data 

Report). 

 

Initial concentrations of TDS in spoil water will be highest following initial wetting.  As 

groundwater flows through the spoil, availability of soluble salts will diminish and 

concentrations are expected to decrease.  Column testing was also conducted on overburden 

samples from four of the 55 exploration boreholes. (Refer to Appendix C for details on 

methodology and results of the column testing.)  Overall, column leach test results for Otter 

Creek overburden exhibit similar characteristics as observed and described by Van Voast et 

al (1978).  Salt concentrations are initially high (TDS of 3,000 to 15,000 mg/L; SC of 4,000 

to 14,000 μmhos/cm) during the time that overburden is partially saturated (less than one 

pore volume) and decrease rapidly after full saturation is achieved. Salt concentrations 

continued to decline with additional leaching and by the fourth pore volume were very 

similar to well water.  Results of these analyses were used to refine recharge water quality 

predictions that may be expected in the re-saturated spoil as described below.   
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Groundwater flows from the Knobloch Coal in the proposed mine area to clinker and 

alluvium downgradient of the proposed mine.  As mine dewatering commences, the direction 

of groundwater flow will trend toward the active dewatering area.  Based on transient 

groundwater flow modeling results (Appendix B), the direction of groundwater flow will be 

re-established 25 to 30 years after the conclusion of mine dewatering; and spoils are expected 

to be recharged to near baseline groundwater levels between 25 and 50 years after the end of 

dewatering.  A “coal buffer”, left in place to restrict flow from alluvium and clinker during 

dewatering, will also regulate flow from spoils to clinker and alluvium to near background 

levels.  Assuming gradients are similar or flatter than the current gradients, groundwater flow 

from the mined area will be equal to or less than current estimated flow.   

 

A groundwater quality mixing analysis was performed by coupling the results of saturated 

paste extracts and column leach testing, with flow budgets from mine spoils to downgradient 

receptors.  An estimated SC of 7,000 mhos/cm was assigned to the spoil water for the 

mixing analysis (Appendix C).   

 

Flow budgets were extracted from the transient groundwater flow model (Appendix B).  The 

model derived flow paths for spoil water moving from mine are through the coal buffer, into 

the clinker downgradient is shown on Figure 6-2.  Based on the mixing analysis, de-minimus 

changes in SC within the range of natural variability are projected for the downgradient 

clinker and the Threemile Creek alluvium.  Model predicted post mine SC values are 

compared to pre-mine baseline conditions in the table below: 

 

UNIT     

Premine  

SC  

(umhos/cm)  

Predicted Post 

Mine SC 

(umhos/cm) 

  

  

Max Ave 

 Clinker 

  

4240 3144 3446 

Threemile Alluvium 

 

3940 3243 3417 

Otter Creek Alluvium 6650 3607   

Otter Creek Surface Water 4990 3825   
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The overall lack of spoil water influence on downgradient water quality is attributable to the 

minimal amount of disturbance relative to the overall size of the groundwater flow system.  

 

Furthermore, the modeling used to predict impacts to water quality downgradient of the mine 

used a simple mixing analysis and did not consider other chemical or physical 

transformations that may occur as the spoil water flows through the coal buffer as it moves 

downgradient.  Clark’s (1995) study of spoils water at two mines in Montana indicated that, 

under certain conditions, concentrations of some dissolved ions in spoil water will decrease 

as the water flows into an unmined coal seam.  The geochemical processes most likely to 

result in these decreases include:  a population of sulfate reducing bacteria, organic carbon 

suitable as an energy source for the bacteria, a source of iron to facilitate the precipitation of 

iron-sulfide minerals, and the capacity of the coal to exchange sodium ions for calcium or 

magnesium ions.  Clark’s study focused on spoils water at the Big Sky Mine and the West 

Decker Mine in Montana. 

 

Spoil water quality from other mines in southeast Montana provide further insight into 

groundwater quality that might be expected in the Otter Creek Spoil.  Van Voast 1988 

reported that water in undisturbed units contained substantially lower concentrations of 

dissolved constituents than spoil water.  Samples from wells completed in coal seams 

averaged about 1750 mg/L; whereas average spoil water quality ranged from 2,880 to 3,660, 

about double the concentrations observed in the undisturbed units.  Sodium, calcium, 

magnesium, and sulfate comprised the majority of additional dissolved solids in the spoil.  

 

Preliminary spoil (backfill) water quality data collected in the Middle Powder River Basin 

(PRB) in Wyoming from spoil monitoring wells at active coal mines indicates post-mine 

groundwater quality in spoil aquifers approximates pre-mine water quality (WDEQ CHIA 27, 

2011).  A median of 3,080 mg/l for TDS was observed from 1709 samples reported by the 

PBR mines between 1977 and 2011.  The spoil water in the study area is a Ca-SO4 type 

which is the same type as was observed in the overburden.   The median concentration of 
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TDS in the overburden (Wasatch Formation) was reported to be 2,568 mg/l.  Ogle (2004) 

reports a median of 3,514 TDS from over 2000 spoil water samples collected between 1986 

and 2002 from coal mines on the eastern edge of the PRB in Wyoming.  Ogle also found that 

higher TDS concentrations in the spoils aquifer were associated with distance to drainage 

channels and clinker outcrops.  Hoy et al (2003) also evaluated spoil water quality data from 

mines along the eastern PBR and found that spoil water is usually similar to baseline water 

quality in the coal (Wyodak-Anderson) and the overburden (Wasatch). 

6.3 ALLUVIAL VALLEY FLOORS - PROBABLE HYDROLOGIC 

CONSEQUENCES 

At the time of this writing, an alluvial valley floor (AVF) determination has not been 

completed.  However, disturbances, if any, to potential AVF’s will only occur in association 

with construction of access roads, conveyors, and other associated mine support facilities, 

and will have no effect on surface water in Otter Creek or alluvial ground water.  Coal 

removal will not occur under any potential AVF’s.   

 

Observations, production data and shallow groundwater quality data indicate that existing 

shallow ground water conditions do not significantly facilitate or enhance agricultural 

production, due to elevated EC in soils and groundwater.  The majority of production 

enhancement in the vicinity of the coal tracts occurs in response to infiltration of higher 

quality runoff water from snow melt and major rainfall events.  Essential hydrologic 

functions are addressed in detail in Baseline Report 325A – Alluvial Valley Floors, Section 5.   

 

Groundwater modeling of the proposed mine indicates water levels in the alluvium along 

Otter Creek may be temporarily lowered less than 2 feet.  Because there appears to be 

minimal sub-irrigation under existing conditions, impacts from lowering groundwater levels 

in potential AVF’s will not be discernible, and may be beneficial due to reduced 

concentration of salts in the root zone.  As noted above, a groundwater quality mixing 

analysis was performed by coupling saturated paste extract results and column leach test of 

overburden and projected flow budgets from mine spoils to downgradient receptors.  Based 
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on the mixing analysis, nearly immeasurable changes in SC are predicted for alluvium in 

Otter Creek and Threemile Creek.   

  

6.4 SPRINGS- PROBABLE HYDROLOGIC CONSEQUENCES  

Following reclamation, surface water uses and accessibility will be essentially the same as 

available during pre-mine uses, except as described below and in Section 5.0, above.  Water 

sources will continue to exist in Otter Creek, Fortune Spring, Coal Creek Spring, and 

seasonally in topographical low spots and the remaining or new impoundments. 

 

6.4.1 Spring Water Quantity- Probable Hydrologic Consequences 

Fifteen springs or seeps were identified within the Tract 2 mine permit boundary area.  Six of 

those that lie within the extent of the area to be mined in Tract 2 will be removed by mining 

and will not be replaced.  The seeps and springs within the mine area and permit boundary 

are listed on Table 5-1 and Plate 3, Baseline Report 304E - Water Resources Data Report.  

All seeps identified in the proposed mining area were either standing water with no 

discernible flow (possibly localized topographic lows and/or with residual water from recent 

precipitation events), or seeps that derived their source water as release from storage in 

nearby sediments.  Each of these sites was visited in June 2012, and all were dry.  This 

indicates that the seeps were fed by water held in local storage from heavy precipitation in 

2011 and not by baseflow. 

 

Pond P1 likely has a spring associated with it due to its perennial nature.  This pond and the 

associated spring will be removed during mining.  The owner of record for water rights from 

this pond is Ark Land Company. 

 

Eight minor seeps or springs are located within the proposed permit boundary, but outside of 

the area to be mined.  All are very low yield seeps likely receiving recharge from the release 

of water from local unconsolidated sediments.  None are perennial seeps and each has been 

observed to be dry during past years of monitoring.  At springs SSI-11-14 and SSI-11-19 

mine activities could affect the recharge areas due to infrastructure construction located 
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upgradient of the site.  However, given the lack of yield and ephemeral nature of all the seep 

and spring sites, no impact to the hydrologic balance of the undisturbed sites will occur.  

Potential consequences for each seep and spring are described in Table 5-1. 

 

Site SSI-11-20 appears to be a moist spot in a small oxbow near Otter Creek.  The presence 

of water at this location is dependent on water levels in the alluvium near the creek and 

would be temporarily impacted if mine dewatering lowers water in the alluvium.   

 

6.4.2 Spring Water Quality - Probable Hydrologic Consequences 

Two named springs are located outside of the proposed mine boundary; Fortune Spring and 

Coal Creek Spring.  Both springs receive recharge water from overburden units that are 

stratigraphically above and higher in elevation than the coal to be mined.  There will not be 

any disturbance in recharge areas for these springs.  Based on these relationships, changes in 

water quality are not reasonably expected at these springs.  The USFS is the current owner of 

record of water rights at these two springs (Table 5-1). 

 

As mentioned in the previous section, Site SSI-11-20 appears to be a moist spot in a small 

oxbow near Otter Creek.  The presence of water at this location is dependent on water levels 

in the alluvium near the creek.  Water derived at this site would be from the Otter Creek 

alluvium.  Flow to the area is from the south and will not be affected by mining at the Otter 

Creek Mine.  Therefore, water quality impacts at this site are not reasonably expected. 

 

6.5 PRIVATE WELLS - PROBABLE HYDROLOGIC CONSEQUENCES 

Wells within the groundwater model predicted limit of five foot drawdown in the Knobloch 

Coal are listed in Table 6-1.  Also included in the table is an estimate of potential impacts to 

the wells and overall usability of the wells for their intended purposes.  The locations of the 

wells are shown on Figure 6-3.   

 

One hundred and eight private wells were identified within the projected extent of the five 

foot drawdown.  Estimates of impacts were based on the location of the wells, stratigraphic 
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position of the wells, completion intervals, water management plans, groundwater modeling 

results, and understanding of local hydrogeology.  Monitoring wells installed for the Otter 

Creek Mine baseline study are not included in this discussion or shown on Table 6-1.  Based 

on this review, it was concluded that 15 wells will potentially show some level of impact.   

 

Projected impacts include complete removal of the well, or temporary decreases in water 

levels.  Projected impacts to private wells are as follows: 

 Four wells will be removed by mining; and 

 Eleven wells may experience very slight to moderate drawdown. 

 

Wells within the proposed mine area will be removed during mining.  Replacement wells will 

be installed if the post-mine use requires wells in these areas, or for monitoring purposes.  

Potential water supply targets are described in Baseline Report 304E – Water Resources Data 

Report. 

 

A limited number of wells exist within Tract 2, and around its perimeter.  Generally, wells 

completed in the overburden in the proposed mine area will be removed.  Wells in the 

overburden near the mine area are not likely to experience significant impacts due to mining 

since recharge to these wells occurs locally.   

 

Wells completed in the Knobloch Coal will have varying amounts of water level changes.  

Changes in groundwater levels do not necessarily equate to impacts to use.  For example, if a 

well is completed in a 60 foot coal seam and exhibits a potentiometric head that is 50 feet 

above the top of the coal, a reduction in head of 20 feet will not necessarily affect the 

usefulness of that well.  Groundwater monitoring wells at batteries B6 and B7 have been 

installed to detect and quantify changes in water levels in the coal near the permit boundary.  

Additional monitoring wells will be installed on CNF property to the east of the mine area to 

provide additional information regarding water levels and quality for evaluation of potential 

impacts. 
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Impacts from potential future mining in Tract 1 and Tract 3 are not included in this 

evaluation.  However, any wells in these areas will be thoroughly evaluated prior to mining in 

those areas.  It is anticipated that impacts to wells in these areas would be similar to those in 

the Tract 2 area, and that replacement water could be provided from deeper units if necessary. 
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7.0  WATER RESOURCES MONITORING PLAN  

 

Water resources at the Otter Creek Mine will be monitored for quality and quantity through a 

network of monitoring sites that include wells, surface water, springs, and ponds.  A 

monitoring plan has been developed for the mine and is included in Exhibit 314B – 

Hydrologic Monitoring and Quality Assurance Plan. 
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8.0  MATERIAL DAMAGES 

 

Material damage is defined in 82-4-203(31), MCA, as “with respect to protection of the 

hydrologic balance, degradation or reduction by coal mining and reclamation operations of 

the quality or quantity of water outside of the permit area in a manner or to an extent that land 

uses or beneficial uses of water are adversely affected, water quality standards are violated, or 

water rights are impacted.  Violation of a water quality standard, whether or not an existing 

water use is affected is material damage.”    

 

Operations at the Otter Creek Mine will be conducted in a manner to minimize adverse 

effects on and prevent material damage to the hydrologic balance.  Mitigating measures are 

discussed in Exhibit 314A – Protection of the Hydrologic Balance.  Additionally, 

groundwater and surface monitoring programs have been designed to allow early detection of 

changes in quality and quantity of water resources within the permit boundary.  Review of 

water quality, water level and flow data will be evaluated to identify potential changes in the 

hydrologic system.  Any changes identified in the hydrologic system will be evaluated and 

addressed through further investigation, revision or application of best management practices, 

and/or implementation of specific mitigation measures (if necessary).   

 

Management practices will be employed to reduce the potential for occurrence of changes in 

the hydrologic balance.  These will include management of surface water and groundwater to 

minimize impacts through surface water runoff containment, groundwater management, mine 

planning, and water resources monitoring.  Management practices will be revised if/when 

methods to enhance protection of the hydrologic balance are identified.    

 

Based on the evaluation of baseline data and probable hydrologic consequences analysis, no 

material damages are expected.  However, based on the monitoring design for the system, any 

indicators of potential material damages will allow early detection of potential changes in the 

hydrologic system, which can be evaluated and addressed, as necessary. 
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9.0 LIFE OF MINE CUMULATIVE HYDROLOGIC IMPACTS 

 

9.1 ANTICIPATED MINING 

The only other anticipated mining in the vicinity of Otter Creek Tract 2 is on Otter Creek 

Tracts 1 and 3, both of which are leased by Ark Land, are within the mine plan area, and 

hence will be sequentially mined by OCC as shown on Map 1 – Mining Sequence.  There are 

no other known coal leases in the area except Sections 16 and 36 (T4S, R45E); both are State 

of Montana leases within the Otter Creek Coal Tracts which are currently held by 

Consolidation Coal Co. and Great Northern Properties, respectively.  There are no known 

existing or pending Federal coal leases in the area, nor are there any pending permit 

applications. 

 

9.2 CUMULATIVE IMPACT AREA 

The Cumulative Impact Area for purposes of this discussion consists of Otter Creek Coal 

Tracts 1, 2 and 3, and the adjacent area where surface water and/or ground water resources 

“could reasonably be expected to be adversely affected by proposed mining operations”  

(82-4-203 MCA).  This definition is distinct from “material damage”, also defined at  

(82-4-203 MCA), and addressed in Section 8.0 above.  Adverse effects can occur without 

constituting material damage. 

 

9.3 CUMULATIVE HYDROLOGIC IMPACTS 

As described in detail above, hydrologic impacts will be localized, largely confined to the 

permit area, and for the most part temporary.  The mine plan has been designed to minimize 

hydrologic impacts and prevent material damage to hydrologic resources outside the permit 

area, and the nature of the hydrologic system is such that projected impacts are so slight as to 

be in all probability not discernible.  Mining on Tracts 3 and 1 will follow in sequence; 

similar mitigating measures will be employed in mine plan design and implementation, and 

hydrologic impacts are expected to be similar and probably less because on Tract 2 hydraulic 

gradients in the Knobloch Coal and direct contact with the Otter Creek alluvium are both 
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greater than on Tracts 3 and 1.  Projection of cumulative hydrologic impacts for mining in 

Tracts 1 and 3 will be aided by observations and analysis performed during the mining of 

Tract 2.  Groundwater dewatering and performance of water management practices will 

provide additional data in further evaluating the potential cumulative impacts, either direct or 

indirect, which can be anticipated with expanded coal mining in the area. 

 

Analyses provided in this document suggest that localized impacts to Otter Creek and the 

groundwater system will occur.  Current hydrologic information suggests that Tracts 1 and 3 

will generally behave in a similar fashion to Tract 2.  However, any project impacts 

associated with mining are not expected to have the effect of causing water quality standards 

to be violated or degrading water quality, or reducing the volume of water to a point that the 

current uses would be impaired or damaged.   

 

9.4 MATERIAL DAMAGE CRITERIA 

Material damage is defined in 82-4-203(31), MCA, as “with respect to protection of the 

hydrologic balance, degradation or reduction by coal mining and reclamation operations of 

the quality or quantity of water outside of the permit area in a manner or to an extent that land 

uses or beneficial uses of water are adversely affected, water quality standards are violated, or 

water rights are impacted.  Violation of a water quality standard, whether or not an existing 

water use is affected is material damage.”    

 

Otter Creek was originally listed as impaired for agriculture, warm-water fishery, and aquatic 

life beneficial uses by salinity, TDS, chlorides, metals, suspended solids, and other habitat 

alterations on the Montana 1996 303(d) list (MDEQ, 1996).  The basis of the 1996 

determination was unknown; and sufficient credible data were not available to make an 

impairment determination on the 2006 303(d) list (MDEQ, 2006; USEPA/Tetra Tech, 2007).  

Otter Creek is listed as impaired by iron, salinity, and suspended solids on the 2012 303(d) 

list.   
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A numeric water quality standard for salinity of 500 mhos/cm was adopted by the Montana 

Board of Environmental Review in 2006 for all tributaries of the Tongue River to protect 

these waters for agricultural use.  In a review of available data for Otter Creek (USEPA/Tetra 

Tech, 2007), it was found that the salinity standard (by SC) was exceeded by nearly all 

individual samples.  Only samples taken during the highest 5% of surface water flows had SC 

less than 500 mhos/cm.  All of the monthly averages included in the comparison were 

greater than 500 mhos/cm.  A modeling analysis included in the study indicated that 

exceedances of the salinity standard were due to natural causes (USEPA/Tetra Tech, 2007).    

 

Similarly, seasonal numeric water quality standards were adopted for SAR.  During the 

growing season (March 2 through October 31), a monthly average SAR standard of 3.0 

applies.  The maximum SAR standard for a single sample during the growing season is 4.5.  

The monthly average and instantaneous maximum SAR standards during the non-growing 

season (November 1 to March 1) are 5.0 and 7.5, respectively.  Otter Creek exceeds the 

growing season SAR standard greater than 96% of the time.  The source of SAR exceedances 

is thought to be due to natural causes, rather than human influences (USEPA/Tetra Tech, 

2007).   

 

MDEQ initiated Total Maximum Daily Load (TMDL) development for Otter Creek in 2013 

by implementing a sampling program (MDEQ 2013a), developing a salinity model and 

holding a Watershed Advisory Group meeting.  Subsequently, DEQ determined Otter Creek 

is not impaired for sediment and removed the sediment impairment from the 303(d) list 

(impaired waters list) (MDEQ, 2013b). The salinity model was completed and the simulated 

results show that EC and SAR under pre-Columbian Era conditions exceed Montana's 

Tongue River tributary standards over 99% of the time, and that current agricultural practices 

and other human activity have negligible impacts on EC and SAR in Otter Creek.  

 

AVF studies during the baseline investigation concluded that maximum benefits to 

agricultural areas along Otter Creek occur during spring snowmelt.  During these times, the 

creek may become bank full, and overflow waters across the valley floor, providing higher 
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quality soil water for plant utilization and flushing of accumulated salts.  Operations at Otter 

Creek Mine will have no effect on spring runoff arising from the upper reaches of the Otter 

creek watershed.  As evidenced by 2012 field observations, crops along the creek appear to 

receive negligible benefit from sub irrigation.  Changes in water levels will have little, if any, 

impact on late season production.  Further, Otter Creek does not flow continuously, with 

some years drying up completely (no flow measured at Ashland USGS station).  During these 

times, the contribution of surface flow to the Tongue River is zero.  During normal baseflow 

conditions, the flow is quite small providing only low flows with SAR exceeding established 

standards.  Changes to the volume of flow, and the quality of flow to Otter Creek, are 

projected to be minimal, if detectable at all, and within the range of natural variation.  

Furthermore, negative affects to the existing uses are not projected. 

 

Although water level declines in the Knobloch Coal are projected during mine operations, 

adverse impacts on water and land use are not anticipated because of a lack of wells 

completed in this unit.  Although the groundwater model projects water level declines for up 

to about 10 miles to the east of the mine, measurable declines would be material only if the 

decline in a specific well precluded its use, and the water supply could not be replaced. 
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